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Abstract. The method of ‘Hamilton multiplier functions’ is applied to a relativistic 
Lagrangian containing a four-acceleration. A recent formulation, in which it is stated 
that the current theory of multipliers does not correctly handle the subsidiary conditions 
on the canonical variables that arise from the first-order Lagrange equations of motion, 
is later considered in the context of the example here given. 

1. Introduction 

When a Lagrangian contains accelerations as well as coordinates and velocities, a 
procedure for finding Euler-Lagrange equations is known. This dates back to Ostro- 
gradsky (1850). The method, including a canonical formalism for such Lagrangians, 
was described by Whittaker (1937). More recently the subject has been one of renewed 
interest, as Riewe (1972) describes in a paper published within the last two or three 
years. This work contains references to Borneas (1959, 1960, 1969), Hayes (1969), 
Hayes and Jankowski (1968), Koestler and Smith (1965), Kruger and Callebaut (1968), 
and Rodrigues and Rodrigues (1970); and the ‘generalized mechanics’ for dealing with 
Lagrangians containing derivatives of the second, and also of arbitrarily high, order 
in the generalized coordinates is the principal interest in these works. 

Also recently the canonical equations arising from a degenerate Lagrangian have 
been placed on a more secure footing (Shanmugadhasan 1973). This method, employing 
the so-called Hamilton ‘multiplier functions’, represents in specialized form the cul- 
mination of the work of Dirac (1950,1959,1964,1969), Anderson and Bergmann (1951), 
Haag (1952), Kundt (1966), Shanmugadhasan (1963), and many others. A degenerate 
Lagrangian is one whose Hessian matrix, the elements of which consist of all second- 
order partial derivatives of the Lagrangian with respect to the generalized velocities, 
is of constant singular rank everywhere within the space of the arguments of the 
Lagrangian. For such a Lagrangian there always exist independent relations between 
the generalized coordinates and momenta which prevent the usual method for passing 
from the Lagrangian to the Hamiltonian formalism from being used. Such a procedure 
(we shall refer to the one given by Shanmugadhasan 1973) for a degenerate Lagrangian 
for passing to the canonical equations covers the case of the acceleration dependent 
Lagrangian. The reason for this may be seen as follows. For the purposes of the 
Lagrangian formalism an acceleration dependent Lagrangian is converted to a new 

496 



A canonical formalism for an acceleration dependent Lagrangian 497 

Lagrangian containing extra coordinates and velocities? ; and the accelerations in the 
Lagrangian do not appear as such, but are introduced in the guise of new velocities. 
This augmented Lagrangian including the extra variables then has no velocities in it 
corresponding to the new coordinates which have been introduced. Consequently 
the Hessian matrix contains a column of zeros and the augmented Lagrangian is degen- 
erate. The case has been illustrated by Dirac (1964). 

Usually this presents no problem with classical Lagrangians and the method of 
Dirac (1958) or of Shanmugadhasan (1973) may be used as a straightforward enactment 
to the logical goal. However, for relativistic particle Lagrangians which are subject 
also to the requirement that the four-velocity has unit norm 

i%, = 1, 

a further multiplier is needed to enforce this condition. It should be noted that for this 
case of an acceleration dependent Lagrangian the method of homogeneous velocities 
(Peres and Rosen 1960) cannot be used in place of having to have a multiplier for this 
condition, since the augmented Lagrangian will not be homogeneous of first order in 
all the generalized velocities. 

2. Lagrangian formalism 

This point is now illustrated by referring to Riewe’s Lagrangian (Riewe 1972) as a 
typical example of such an acceleration dependent Lagrangian. The example will also 
serve as an illustration of a method for dealing with acceleration dependent Lagrangians. 
The Lagrangian given by 

(2.1) 
where m and w are taken as absolute constants, is the model chosen by Riewe as a simple 
classical theory of a spinning particle where the particle is automatically endowed with 
a spin due to its orbital motion. The constant w has units of frequency (w CT loz3 s-  ’). 

In the following we shall use relativistic notation xo = ct ,  x1 = x, x2 = y ,  x3 = z 
(g,” = diag(1, - 1, - 1, - l)), and a dot will denote differentiation with respect to the 
proper time, r, defined for an infinitesimal element by dr2 = g,, dx” dx’. The Lagrangian 
(2.1) in the augmented variables xr, ip, I,, A$, A l ; , i $  (Infeld 1957, Dirac 1964) becomes 

L =  - jmc2(ii-”i, - c2x’x,/w2) 

where we have written 1; in place of X’ in the original Lagrangian L, and the incorpora- 
tion of the multipliers A l  and Al; ensures that the conditions i@i, = 1 and ii.” = A$ 
are kept throughout the motion. We have also written 

A = mc2, B = mc4/w2. 

The Euler-Lagrange equations in the variables xp, A 1 ,  A; and Al; then give the equations 

d 
dr  
- ( A 1 i p  - A i p +  A” 3) = 0, (2.3) 

t This use of Lagrange undetermined multipliers is more general than the classical method, but is the more 
correct since it applies to non-integrable differential constraints (Goedecke 1966). 



498 J R Ellis 

-i”+$ = 0, (2.6) 

where the quantities within brackets are the momenta dL*/di,, and dL*/dAzr respectively. 
Equations (2.3), (2.5) and (2.6) give rise to the equations of motion 

(A-A,)Xfl+BXfl-A,ifl = 0, (2.7) 

and with the restriction (2.4) this leads tot 

A ,  = Bi”Xfl. 

On combining these last two equations we find 

and the form of this result compares closely with that of Riewe (1972) with the exception 
of the last terms which arise from the requirement that the Lagrangian must be con- 
sistent with the condition i%” = 1. Equation (2.9) has been effectively derived from 
the ‘extended’ Euler-Lagrange equations quoted by Riewe : 

where At; replaces Riewe’s X”, and L’ = L+iA1(kflk5, - 1) replaces his L (see also Davis 
1970, p 74). 

As in most problems involving the use of Lagrange multipliers the choice of the 
multipliers in the Lagrangian is not unique. In this problem we note for later con- 
sideration that the equations of motion for x’ are not affected by adding to L* a term 
of the form 

- V ( W Z f l  - 11, 

where v is any given function of T (not a Lagrange multiplier). The new Euler-Lagrange 
equations which result from the addition of this term to L* can be conveniently expressed 
in the form of the previous equations (2.3H2.6) by defining new multipliers A;, 1;’ by 
the ‘gauge transformation’ 

A; = ~ , - 2 ~ ,  Ai’ = A; + 2 v 4  * 

The new Euler-Lagrange equations are then the equations (2.3H2.6) where A;, 
replace 2 ,  , A; respectively. The resulting equations (2.7H2.9) are thus unchanged 
except that A ,  is replaced by Ai. This has no effect on the solution for x’. 

3. Hamiltonian formalism 

For the Hamiltonian formalism we note that the Lagrangian (2.2) is degenerate. The 
Hessian matrix is of dimension thirteen and is of rank eight. Because of this we have 

t The solution for 2 ,  is I ,  = -$EYX,, +constant. 
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five ‘first kind’ subsidiary conditions (in the sense of Shanmugadhasan 1973, equation 
( 1 1 ) )  arising. Defining the momenta conjugate to the coordinates by 

aL* aL* aL* aL* p“’ --, aa, p t  = --9 & =  -&’ € G =  -&’ a i  1 

these first kind subsidiary conditions are 

where we have used the special symbol of Dirac (1958) to denote that they are ‘weak’ 
equations and they must not be used before working out the Poisson brackets in the 
coordinates and momenta. Another set of five conditions which we shall call ‘second 
kind’ conditions arise directly from the first-order Lagrange equations (2.4) and (2.6). 
These are 

These equations are similar to Shanmugadhasan’s second conditions which arise from 
the first-order Lagrange equations, but there is a slight difference from his conditions 
(see his equation (9)), and we now examine this difference since it leads to further 
subsidiary conditions on the canonical variables. On differentiating the equations (3.3) 
or alternatively the first-order Lagrange equations (2.4), (2.6) with respect to the proper 
time 5, we have five new equations. Of these we find that one may be expressed in 
terms of the canonical coordinates and momenta only. This equation does not hold by 
virtue of the remaining second-order Lagrange equations (2.3), (2.5), and is independent 
of the previous subsidiary conditions. That is to say, this differentiated first-order 
Lagrange equation essentially provides new information between the coordinates and 
the momenta which may not be deduced by other means. Such a situation is not con- 
sidered by Shanmugadhasan (1 973) whose consistency conditions on the initial Lagrange 
equations are such that the total time derivatives of the first-order Lagrange equations 
are all assumed to hold by virtue of the initial Lagrange equations. Thus, whereas 
Shanmugadhasan’s second conditions are the only further subsidiary conditions 
necessary, we here need a further condition which arises from the total time derivative 
of the first-order Lagrange equation (2.4). 

Such a possibility of constructing further subsidiary conditions on the canonical 
variables is considered by Dirac (1964), who gives a procedure for deducing new con- 
straints (he calls them ‘secondary constraints’) from the time derivatives of the original 
ones by exploiting the use of the multiplier rule. These original constraints (called 
‘primary constraints’) are the first kind conditions referred to above and are assumed 
given beforehand. But, as Shanmugadhasan correctly states, Dirac’s theory of multi- 
pliers does not correctly handle the subsidiary conditions because all the subsidiary 
conditions must be known before setting up the multiplier rule and before the canonical 
theory is applied. Consequently the multiplier rule cannot be used to get these con- 
ditions. Nevertheless it is clear from the multiplier rule on the compiete set of constraints 
that the new subsidiary conditions can only arise as the time derivatives of the previous 
ones, as in Dirac’s theory. 

In view of the above reference to the difference between this work and Shanmugad- 
hasan’s, it is thus legitimate to construct these new constraints, additional to the second 
kind conditions, directly by differentiating the second kind conditions (ie the first-order 
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Lagrange equations), since the derivatives of the first kind conditions do not give rise to 
new constraints. This in our case gives rise to two further conditions 

which we shall call, following Dirac (1958) and Anderson and Bergmann (1951), the 
‘secondary constraints’. They have not been deduced by using the multiplier rule as 
in Dirac’s theory, and are obtained by total time differentiation of the earlier subsidiary 
conditions: xil) by differentiating 4il), and x t 2 )  by differentiating x( l , .  We have used 
Dirac’s terminology because there is a formal similarity with Dirac’s procedure in so far 
as the differentiation of the previous subsidiary conditions may be repeated until all 
the secondary constraints have been found. This procedure supplements Shanmugad- 
hasan’s treatment in view of his assumed limitation of the scope of the initial Lagrange 
problem. (This procedure is confirmed later by our use of the multiplier rule on the 
complete set of constraints, where it is verified through the canonical equations of motion 
that the derivatives of the subsidiary conditions corresponding to the first-order Lagrange 
equations give rise to no further constraints, beyond the constraints (3.4).) 

Before introducing the multiplier rule for the complete set of constraints, we mention 
that Dirac’s theory involves the use of the multiplier rule (given below) in a restricted 
form, where fewer constraints arise in the canonical equations. The ‘secondary con- 
straints’ are assumed not to arise in the total Hamiltonian. (In Shanmugadhasan’s 
treatment all the subsidiary conditions are equally likely to appear in this Hamiltonian.) 
Thus the consistency conditions (see below), arising from the time derivatives of the 
original constraints in Dirac’s theory, lead both to the equations for the multipliers 
and to new equations between the canonical variables only. In the latter case, according 
to the theory, they are regarded as new constraints (the secondary constraints). In 
comparison with this treatment, the multiplier rule cannot here be used to generate 
new subsidiary conditions from given ones, as in Dirac’s theory, unless it is known 
beforehand that the given subsidiary conditions are the only ones which arise in the 
canonical equations of motion. In general such information is not known in advance. 

The following argument now traces Shanmugadhasan’s multiplier rule as it is applied 
to the complete set of constraints (3.2), (3.3), (3.4). The Hamiltonian for the motion is 
written in the form 

H = Ho + p 1 4  1) + P Z P @ Z )  + v 1 4  1 )  + v2,4;5 ,  + i l X ( 1 )  + iZX(2 ,  (3.5) 

where p’s, v’s and i ’ s  are arbitrary multiplier functions to be determined. The Hamil- 
tonian H o  is found in the usual way, normally by the use of the first kind conditions 
only. The second kind subsidiary conditions, when they form an invariant system with 
respect to the canonical equations, do not modify the canonical equations in any way 
(Shanmugadhasan 1973), and may be used as well. However this is not the present 
case under discussion, and their use in the determination of a suitable Ho, although it 
evidently affords considerable simplification, will not be made. (We do not assert, 
however, that they may not be so used.) We have 

+( I ). +ti) Ho z -p“i,,-p’$2,,-L* = ( ~ 1 1 ’ - A i i . ’ + 1 1 5 ) i , + B ~ ~ ~ 2 , + ~ A i - ’ ~ ,  

- ~ B ~ ~ ~ ~ ~ - ~ ~ ( i r - ~ 2 , ) - ~ ~ l ( i , i , -  1) 
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(by (2.2) and (3.1)) 

(by (2.2) and (3.1)). 
The canonical equations read 

s = ag/a~-[g, HI 
z ag/a~-[g,  ~ ~ ] - p , [ g ,  4(,,1-. .-12[g,x(2)1 (3.7) 

(by (3.2)-(3.5)), where g is any function of the coordinates, the momenta and possibly 
the time. Substituting g = 4(1), f12), 4i1), &$, x ( ~ ) ,  x ( ~ )  in turn, we deduce the values 
for the multipliers. A Poisson bracket is defined in the usual way by 

at  aq a t  aq at  aq a t  a~ 
9 ax, app ap” ax, an, ap, apl an, 

[t q] = - -+- - 

+----- at aq a t  aq a t  atl a t  aq 
an; aPz, apl;a12, an., dP3, a& 813, 

and is with respect to all the coordinates and the momenta. 
We shall need the following Poisson bracket values : 

[4(1)>4i;)l = -4 
[&, 4;)l -gcv 

[4?2)> X(2)I = -4 
[ 4 h  X(1)I  %2 

[4il), X(2)l “)o 
4 1 ) & )  

bi rkzc I ) 

[ 4 ; 4 ) 9 X ( l ) l  = 0 

[4ih X(2) l  ly -2B- W l  -A)& 

[xcl), x ( ~ ) I  2) -~B-’P;P~, .  

(All the other Poisson brackets of the subsidiary conditions (3.2), (3.3), (3.4) with each 
other vanish independently of the use of the subsidiary conditions.) 

[4(1,, Ho1 %’O 

[4?2)? H01 

[4{1), Ho1 2’0 

[ x ( , ) ,  Hol 2’0 

0 * i  I&% ) 

[4;I;),Hol W?-v1-4pl; 

Ix(2)> H01 = 3B- ‘ P ; L  

The twelve consistency conditions, which arise by substituting the subsidiary conditions 
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in turn into the equation (3 .7)  and which ensure that the time derivatives of these con- 
ditions hold also, are the following : 

By contracting the second equation with Alp we have T 2  = 0. Hence the first three 
equations give the unique solution v$ = 0, T1 = 0, c2 = 0; this has already been used 
in the equations (3 .8)  and (3.9). The remaining equations then completely determine 
the p's : 

(3.10) 

We now give the Hamilton equations arising from the general equation (3 .7)  by 
substituting g = x', I , ,  I $ ,  I $ ,  p", p , ,  &, p!j respectively: 

i' = (p' + 1$)/(A - A , )  

(3 .11)  

We have already made use of v ,  = 0, v$ = 0, c l  = 0, c2 = 0, but the values of p ,  , p; 
from (3.10) need to be substituted. We shall obtain the correct Lagrange equations 
( 2 . 3 H 2 . 6 )  together with the deductions from them for the rates of change of the multi- 
pliers. To the equations (3 .11)  above we adjoin the subsidiary conditions (3.2),  (3.3),  
(3.4),  and when this is done we find : 

i p  z I; 
1, = - p ,  z p2& = -1 3v  I' 2 - - -P2,I; = BI,,Iq x BX$' (3 .12)  

(3 .13)  
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Thus 

(3.14) 

(3.15) 

(by (3.12)). 
The equations (3.14) and (3.15) above correspond with equations (2.7) and (2.8) 

deduced previously. We have apparently carried out the procedure correctly because 
we have obtained all the correct equations, and this is a check on the calculation. The 
important fact to emerge is that we have been able to compute a Hamiltonian for the 
motion and that this Hamiltonian is unique. On substituting the values of the p’s given 
by (3.10) into the expression (3.5) for H we find for this Hamiltonian, 

where H ,  is the expression given previously (see (3.6)). Hence for this choice of the p’s, 
satisfying equations (3.8), (3.9), the Hamiltonian H satisfies all the Hamilton equations 

a H  1% = --, 
a P ,  ’ dP1’ a P 2 p  dP3, 

a H  15 = --, dH 1, = -- a H  
i i . ’= -- 

when we adjoin the subsidiary conditions (3.2), (3.3), (3.4), to give the correct equations 
of motion. This may be checked by straightforward differentiation. 

In view of the fact that the second-order Lagrange equations were used in the 
derivation of the secondary constraint 1(2) appearing in (3.4), a question may arise as 
to whether a canonical formalism exists which avoids this dependence. Clearly, if we 
do not use the second-order Lagrange equations then the process of deriving the 
secondary constraints goes no further than the constraint x ( ~ ) ,  since without the help 
of the second-order Lagrange equations no further constraints between the coordinates 
and the momenta can be found. In this case we may ignore x ( 2 )  and the formalism is 
not significantly changed. The resulting formalism is one of eleven constraints and 
eleven multipliers. Of the eleven consistency conditions which arise, three equations 
give the unique solution v$ = 0, c1 = 0 (using the same notation for the multipliers), 
while a fourth does not completely determine the p’s. It may be verified that any 
solution for the p’s is connected to any other solution for the p’s by the ‘gauge trans- 
formation’ 

1.4 = pl+a ,  pip = p$-a&. 

The reason for this is that there is one linear combination of the subsidiary conditions 
(excluding xt2 ) )  whose Poisson bracket with the Hamiltonian and with each of the given 
subsidiary conditions vanishes. This is the function 

4( 1) - 1 2 p 4 f 2 )  

and is called by Dirac (1958) ‘first class’ because of this property. Such a constraint 
has no effect on the canonical equations of motion and there will be one arbitrary 
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parameter left undetermined among the p’s. The Hamilton equations (3.11) are un- 
affected by this change, apart from the equation for fi  where A.; is replaced by the 
expression Aip = A;+2v1A$. This makes a slight difference to the equations (3.12) and 
(3.13), but the equations (3.14) and (3.15) remain valid with A ,  and A$ replaced by the 
‘gauge transformed’ multipliers 

We have seen that these changes to the multipliers have no effect on the equations of 
motion for x”. Thus the canonical formalism is significantly unaltered, and the Hamil- 
tonian in this case is not unique because there remains a parameter undetermined, 
arising from the fact that there is one (but only one) first class constraint. (This arbi- 
trariness in the Hamiltonian formalism is similar to that which may also arise in the 
Lagrangian formalism through the addition to the Lagrangian of a term which has no 
effect on the equations for x~.) Although this arbitrariness exists we can nevertheless 
demand (retrospectively) that 

v 1  = d ,  = 0 

always, and this imposes a constraint on the p’s and so determines them. We then have 
exactly the solution (3.10) for the p’s, and the same Hamiltonian (3.16) results. 

4. Conclusion 

Dirac’s multiplier rule has been changed slightly by not requiring the secondary con- 
straints to be deducible from the rule itself. It is legitimate to obtain them by differ- 
entiation of the first-order Lagrange equations and to repeat the process if necessary. 
Nevertheless we have shown that secondary constraints are necessary where in this 
instance the formulation of the problem with Lagrange multipliers apparently does 
not come within the scope of Shanmugadhasan’s work for the reasons stated. Without 
such secondary constraints the number of multiplier functions would be insufficient 
for the complete determination of the Hamiltonian. (If our Lagrangian had come within 
Shanmugadhasan’s formulation we would have needed at most only ten subsidiary 
conditions.) Our procedure falls outside the scope of Shanmugadhasan’s because his 
treatment is limited to those Lagrangians which satisfy the requirement that the time 
derivatives of the first-order Lagrange equations hold by virtue of all the undiffer- 
entiated Lagrange equations. This is not the case with the Lagrangian (2.2). 

We have been unable to compare our Hamiltonian with Riewe’s as they are so widely 
different, but it is sufficient to say that the Hamiltonian (3.16) that we have constructed 
satisfies Hamilton’s equations in all the multipliers as well as the original variables 
x”, p”, A;, & (for an acceleration dependent Lagrangian), so that it is consistent with 
the normalization .Pi,, = 1 ; whereas Riewe’s Hamiltonian is constructed from the 
original variables XI’, p”, P, aL/ax, only, and is therefore not consistent with the con- 
dition i??,, = 1. Nevertheless the Hamiltonians should perhaps agree in the first few 
terms, but even this has not been achieved. We have not discussed the process of 
elimination of the second class constraints to reduce the definition of the Poisson bracket 
to terms which are dependent only on the original variables. 

The calculation resulting in the Hamiltonian (3.16) is self-consistent and produces 
all the correct equations. In the second calculation, which does not make use of one 
secondary constraint, the arbitrariness which arises in the Hamiltonian reflects that 
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which can also arise in the Lagrangian as a result of adding a term which has no effect 
on the equations of motion for x’, and this comes about through the use of Lagrange 
multipliers. This resulting feature in the canonical formalism was not deliberately 
looked for in doing the calculation. In both calculations the constraint (2.4) embodied 
within the Lagrangian needs only to be consistent with the other Lagrange equations, 
and its time derivative does not need to be derivable from them, for the Hamiltonian 
theory to apply. 

Evidently the ‘generalized mechanics’ (Borneas 1959), arising from the work of 
Ostrogradsky (1 850) for Lagrangians containing derivatives of higher order than the 
second, should be relatable to the multiplier rule in general. In our view such a connec- 
tion (if it exists) should be established without much difficulty. 
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